photo by tare
(资料图片)
冠状动脉粥样硬化病变的 影像学研究进展
Advances in imaging research of coronary atherosclerosis
蒋宇 杨志刚 郭应坤 李媛 石睿 王进
作者单位: 610041 成都,四川大学华西医院放射科;610041 成都,四川大学华西第二医院放射科
通信作者: 王进,电子信箱:wangjin19901967@163.com
冠状动脉粥样硬化是冠状动脉最常见的病变,可以导致心肌梗死和心原性死亡。对冠状动脉粥样硬化病变严重程度进行准确的评估,对于其治疗、预后有着重要的临床意义。影像学检查能较为直观地评估冠状动脉粥样硬化病变的严重程度,以辅助临床决策的制定、预测不良心血管事件的发生及判断患者预后。目前,多种影像学检查方法可用于冠状动脉粥样硬化情况的评估。除了评价冠状动脉粥样硬化解剖学特点,评估血管腔内血流情况的功能学检查对于患者病情评估也是至关重要的。本文就目前冠状动脉粥样硬化病变的影像学检查方法进行概述。
0 1 冠状动脉CT血管成像 coronary computed tomography angiographyCCTA是一种非侵入性的冠状动脉影像学检查,具有较高的空间分辨率,扫描时间较短,成像质量较高,目前已广泛应用于临床。CCTA常用于评估冠状动脉狭窄程度、斑块性质和病变范围,识别高风险斑块,评价支架术后或血运重建术后的冠状动脉情况,对冠心病的诊治和预后具有较为重要的临床意义。CCTA可用于评估斑块类型:钙化斑块、软斑块和混合斑块。冠状动脉狭窄程度通常可分为无狭窄、轻微狭窄(0<狭窄程度<25%)、轻度狭窄(狭窄程度为25%~49%)、中度狭窄(狭窄程度为50%~69%)、重度狭窄(狭窄程度为70%~99%)及完全阻塞 [1] 。在非增强CT图像上,能够无创、快速地获取冠状动脉钙化积分(coronary artery calcium score, CACS),以反映冠状动脉粥样硬化程度,辅助心血管风险分层及冠心病进展和预后评估。根据国际心血管CT协会(Society of Cardiovascular Computed Tomography,SCCT)提出的冠状动脉钙化数据和报告系统(Coronary Artery Calcium Data and Reporting System,CAC-DRS),对CACS进行了分类,包括CAC-DRS 0级(CACS=0)、CAC-DRS 1级(CACS=1~99)、CAC-DRS 2级(CACS=100~299)及CAC-DRS 3级(CACS≥300) [2] 。
El Mahdiui等 [3] 研究报道,在稳定性胸痛的患者中,CACS与CT心肌灌注中诱发性心肌缺血的发生有关,随着CACS的增高,诱发性心肌缺血的发生率也随之增加。冠状动脉粥样硬化病变中的高危斑块能在一定程度上反映病变的严重程度。高危斑块通常包括点状钙化(任意方向上小于3 mm的钙化)、低密度斑块(CT值小于30 HU)、\"餐巾环\"征(表现为中央低密度、周围环绕非钙化的较高密度)和正性重构(病变区域管径与病变前后区域管径的平均值之比大于1.1) [4] 。CCTA上显示的低密度斑块(以CT值小于60 HU为参考标准)和\"餐巾环\"征能够独立预测主要不良心血管事件(major adverse cardiovascular events,MACE) [5] 。冠状动脉的生理性狭窄程度与高危斑块数目密切相关,两者与临床事件发生的危险性显著相关,并且两者相结合将带来比单独一种方法更好的预后分层效果 [6] 。目前CCTA还用于冠状动脉周围脂肪(pericoronary adipose tissue,PCAT)的研究,对于PCAT的密度评估具有较好的可重复性(观察者组内和组间相关系数均大于0.99) [7] 。此外,基于CCTA的无监督聚类分析显示,PCAT的衰减指数≥-73.1是MACE的独立预测因子 [8] 。
基于CT的血流储备分数(CT-fractional flow reserve,CT-FFR)在评估冠状动脉不同部位狭窄方面与侵入性的FFR具有较好的相关性,并且与传统的CCTA相比,基于深度学习的CT-FFR在检测血流动力学相关的冠状动脉狭窄方面比CCTA具有更好的诊断性能 [9] 。近年来,人工智能方法也广泛应用在CCTA对冠状动脉粥样硬化病变的评估中。Li等 [10] 研究显示,基于CCTA的影像组学方法在识别冠状动脉粥样硬化特异性缺血(FFR<0.8)的冠状动脉狭窄病变方面优于常规评估方法[曲线下面积(area under the curve,AUC):0.77比0.70]。Tesche等 [11] 研究发现,对于预测MACE,集合了CCTA斑块特征、CT风险评分及临床因素的深度学习模型相较于 logistic 回归方法有更高的诊断价值(AUC:0.96比0.92, P =0.024)。
0 2 冠状动脉磁共振血管成像 coronary magnetic resonance angiographyCMRA是基于MR的非侵入性的影像学检查,可以观察血管腔扩张或狭窄及血管壁的异常情况。相对于需要碘对比剂的CCTA来说,CMRA具有无创、无对比剂风险、无电离辐射及软组织分辨率较高的优点。但是CMRA扫描时间相对较长,图像空间分辨率相对较低,且呼吸运动对成像质量具有一定的限制,目前,CMRA较少用于临床。相关研究报道,在CMRA中95%的节段是达到可诊断标准的,而其识别冠状动脉狭窄程度≥50%的诊断准确性可达80% [12] 。为提高图像质量,深度学习重建技术也被应用在CMRA中,研究发现,应用深度学习重建的高分辨率CMRA的信噪比得到明显改善,并且其图像质量优于常规CMRA [13] 。尽管在临床中使用较少,但CMRA的应用使得患者受益。有个案报道显示,联合应用CMRA及IVUS进行检查和行经皮冠状动脉介入治疗,已成功地在一位碘对比剂过敏的患者中置入冠状动脉支架 [14] 。在长期随访研究中,CMRA能对既往无心肌梗死病史或冠状动脉血运重建史的患者的MACE进行风险分层,并展现出比传统危险因素更高的预后价值,其检测到的梗阻性冠心病发生MACE的风险增加(风险比为2.9) [15] 。随着技术的发展改进,CMRA也将在临床中展现出更大的应用价值。
0 3 冠状动脉造影 coronary angiographyCAG是评估冠状动脉狭窄程度的\"金标准\" ,能显示冠状动脉的血管腔形态,提示病变所在位置,为冠心病的介入治疗提供影像学依据。CAG还可以为其他冠状动脉功能参数测量提供基础。冠状动脉FFR是一种有创检查,是评价冠状动脉缺血的金标准。Choi等 [16] 研究显示,基于CAG计算的FFR值,即定量血流分数(quantitative flow reserve,QFR)与FFR具有较好的相关性,在冠心病患者中,QFR在预测2年后发生心原性死亡、靶血管相关心肌梗死或缺血驱动的靶病变血运重建术方面表现出与FFR相似的效能,较低的QFR值(QFR≤0.8)与其风险增加显著相关。在对PANDA Ⅲ随机试验的回顾性分析中显示,接受根据QFR测值所对应的推荐治疗与两年的临床预后改善相关 [17] 。Yabushita等 [18] 利用人工智能方法,以心脏病专家评估结果为参考标准,基于CAG视频资料,评估胸痛患者是否存在大于75%冠状动脉狭窄,结果显示人工智能方法对于冠状动脉粥样硬化所致具有临床意义的血管腔狭窄有一定诊断价值。但CAG属于有创性检查,存在一定并发症风险。此外,CAG无法评估斑块性质及血管壁、血管周围情况。
0 4 血管内超声成像 intravascular ultrasoundIVUS能提供更详细的冠状动脉解剖及冠状动脉斑块特征信息。IVUS是基于超声成像的特性,在血管内进行实时成像,能够较为清晰地显示和评估血管壁的厚度、血管直径和形状、病变处血管壁厚度、血管狭窄程度、斑块形态、斑块长度及范围,并且对冠状动脉介入术的术前、术后评估、术中指导有着一定的临床意义 [19] 。欧洲心血管介入协会指出,IVUS指导的经皮冠状动脉介入术能够提升具有较长的病变及慢性阻塞性冠脉病变患者的临床预后 [20] 。IVUS指导的药物洗脱支架置入术的益处在多项研究中已得到证实。在纳入了9个随机试验的荟萃分析中,相对于CAG,IVUS引导的药物洗脱支架置入术显著减少了MACE的发生(5.4% 比9.0%,相对风险比=0.61) [21] 。超声流量比(ultrasonic flow ratio, UFR)是基于IVUS快速计算FFR值的新型检查手段。Yu等 [22] 研究显示,UFR具有良好的可重复性,并且与FFR测值具有较好的相关性( r =0.87),提示这种形态功能学相结合的评估方法得到广泛应用的可能性。Cho等 [23] 研究中,基于IVUS的深度学习算法能够快速准确地评估整个血管内斑块钙化和密度减低的程度,这种基于影像数据的方法能够帮助临床医生轻松识别冠状动脉高危斑块,并辅助临床治疗决策的制定。
虚拟组织学血管内超声成像(virtual histology IVUS,VH-IVUS)是一种血管内超声后处理技术,通过对超声图像中的斑块组织进行颜色编码,并将其叠加在灰阶图像上,能够进一步反映不同的组织病理学信息,用不同颜色反映不同的斑块成分:纤维组织(深绿色)、纤维脂质(浅绿色)、坏死核心(红色)、致密钙(白色) [24] 。Nasu等 [25] 研究显示,VH-IVUS对冠状动脉斑块成分的数据分析结果与组织病理学检查结果密切相关,对四种斑块成分的检测准确性为87.1%~96.5%。VH-IVUS有助于薄纤维帽粥样硬化斑块(thin-cap fibroatheroma,TCFA)的检测,VH-IVUS上检测的TCFA和斑块负荷≥70%与较高的MACE风险相关 [26] 。
0 5 血管内光学相干断层扫描 intravascular optical coherence tomographyIVOCT是一种基于导管的分辨率高的血管腔内成像方式,其轴向分辨率可达10 μm [27] 。与IVUS相比,IVOCT能够更清晰地显示冠状动脉血管壁及管腔,在检测粥样硬化斑块成分,特别是识别非钙化、富含脂质或纤维斑块方面更优于IVUS,其对冠状动脉斑块类型的诊断准确率可达90%以上 [28] 。Ali等 [29] 研究显示,IVOCT与CAG引导的冠状动脉介入术的术后12个月内MACE等结局的发生率相似,证实IVOCT在临床治疗方面的潜在益处。在非罪犯斑块上通过IVOCT检测到愈合斑块,未来发生MACE的风险将增加至3.7倍 [30] 。在IVOCT的基础上衍生出的FFR,对于冠状动脉的评估与FFR具有显著的线性相关( r =0.89),因而有成为评估功能性心肌缺血的替代方法的可能性 [31] 。深度学习方法也应用在IVOCT的图像分析中,对冠状动脉粥样硬化组织进行自动提取、冠状动脉斑块分类识别均具有较好的性能 [32] 。
0 6 近红外光谱成像 near-infrared spectroscopyNIRS是利用略低于可见光谱的电磁信号来显示组织的不同化学成分,从光源发射出近红外光,分析探测器所接收的返回的特定光谱信号;由于不同组织具有不同的化学成分,根据检测到的特定光谱信号可以大致确定所含化学成分。脂质核心负荷指数(lipid-core burden index,LCBI)是NIRS用来量化评价脂质斑块负荷的指标。Karlsson等 [33] 研究显示,NIRS能够区分冠心病患者的冠状动脉罪犯斑块和非罪犯斑块所在节段,冠状动脉罪犯斑块所在节段比非罪犯斑块节段有更大的脂质核心,此外,4 mm区段的最大LCBI(maxLCBI4mm)>400与未来发生MACE显著相关。Schuurman等 [34] 研究发现,较高的maxLCBI4mm与MACE风险增高存在独立的连续相关性,maxLCBI4mm每增加100,MACE风险就会增加19%。NIRS联合IVUS(NIRS-IVUS)作为一种新兴的技术,旨在以单个导管来提供与血管结构和斑块成分相关的单次采集信息,被用来评估冠状动脉富脂斑块,可能成为一种有价值的临床诊断和治疗监测工具 [35] 。Waksman等 [36] 研究显示,NIRS-IVUS上检测到的基于患者层面和血管节段层面的maxLCBI4mm>400发生MACE的风险分别增加0.89倍及2.39倍。为改善对冠状动脉粥样硬化患者的管理,NIRS联合OCT的技术也正在被开发应用,NIRS能自动准确地检测脂质核心斑块,而OCT有助于确定NIRS识别的脂核的深度,两种技术优点的结合,可能有助于优化支架置入、识别易损斑块和患易损斑块的人群 [37] 。
0 7 小结冠状动脉粥样硬化是导致冠心病患者心肌梗死和死亡的主要因素。影像学检查能较为直观地评估冠状动脉粥样硬化病变的严重程度及判断其功能学改变。随着影像学技术的发展,多种方法的结合,为临床诊治提供新思路,使得影像学对冠状动脉粥样硬化病变的评估更为全面,使其更高效地服务于临床。
参考文献
[1] Cury RC, Abbara S, Achenbach S, et al. CAD-RADS(TM) Coronary Artery Disease-Reporting and Data System. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology [J]. J Cardiovasc Comput Tomogr, 2016, 10(4): 269-281.
[2] Hecht HS, Blaha MJ, Kazerooni EA, et al. CAC-DRS: Coronary Artery Calcium Data and Reporting System. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT) [J]. J Cardiovasc Comput Tomogr, 2018, 12(3): 185-191.
[3] El Mahdiui M, Smit JM, van Rosendael AR, et al. Relationship between coronary artery calcification and myocardial ischemia on computed tomography myocardial perfusion in patients with stable chest pain [J]. J Nucl Cardiol, 2021, 28(4): 1707-1714.
[4] Puchner SB, Liu T, Mayrhofer T, et al. High-risk plaque detected on coronary CT angiography predicts acute coronary syndromes independent of significant stenosis in acute chest pain: results from the ROMICAT-II trial [J]. J Am Coll Cardiol, 2014, 64(7): 684-692.
[5] Senoner T, Plank F, Barbieri F, et al. Added value of high-risk plaque criteria by coronary CTA for prediction of long-term outcomes [J]. Atherosclerosis, 2020, 300: 26-33.
[6] Lee JM, Choi KH, Koo BK, et al. Prognostic Implications of Plaque Characteristics and Stenosis Severity in Patients With Coronary Artery Disease [J]. J Am Coll Cardiol, 2019, 73(19): 2413-2424.
[7] Tzolos E, McElhinney P, Williams MC, et al. Repeatability of quantitative pericoronary adipose tissue attenuation and coronary plaque burden from coronary CT angiography [J]. J Cardiovasc Comput Tomogr, 2021, 15(1): 81-84.
[8] Hoshino M, Zhang J, Sugiyama T, et al. Prognostic value of pericoronary inflammation and unsupervised machine-learning-defined phenotypic clustering of CT angiographic findings [J]. Int J Cardiol, 2021, 333: 226-232.
[9] Renker M, Baumann S, Hamm CW, et al. Influence of coronary stenosis location on diagnostic performance of machine learning-based fractional flow reserve from CT angiography [J]. J Cardiovasc Comput Tomogr, 2021, 15(6): 492-498.
[10] Li L, Hu X, Tao X, et al. Radiomic features of plaques derived from coronary CT angiography to identify hemodynamically significant coronary stenosis, using invasive FFR as the reference standard [J]. Eur J Radiol, 2021, 140: 109769.
[11] Tesche C, Bauer MJ, Baquet M, et al. Improved long-term prognostic value of coronary CT angiography-derived plaque measures and clinical parameters on adverse cardiac outcome using machine learning [J]. Eur Radiol, 2021, 31(1): 486-493.
[12] Hajhosseiny R, Rashid I, Bustin A, et al. Clinical comparison of sub-mm high-resolution non-contrast coronary CMR angiography against coronary CT angiography in patients with low-intermediate risk of coronary artery disease: a single center trial [J]. J Cardiovasc Magn Reson, 2021, 23(1): 57.
[13] Yokota Y, Takeda C, Kidoh M, et al. Effects of Deep Learning Reconstruction Technique in High-Resolution Non-contrast Magnetic Resonance Coronary Angiography at a 3-Tesla Machine [J]. Can Assoc Radiol J, 2021, 72(1): 120-127.
[14] Kato S, Fukui K. Successful stent implantation with the use of non contrast whole-heart coronary magnetic resonance angiography and intravascular ultrasound in patient with allergy to iodinated contrast media [J]. Cardiovasc Interv Ther, 2021, 36(4): 539-541.
[15] Nakamura S, Ishida M, Nakata K, et al. Long-term prognostic value of whole-heart coronary magnetic resonance angiography [J]. J Cardiovasc Magn Reson, 2021, 23(1): 56.
[16] Choi KH, Lee SH, Lee JM, et al. Clinical relevance and prognostic implications of contrast quantitative flow ratio in patients with coronary artery disease [J]. Int J Cardiol, 2021, 325: 23-29.
[17] Zhang R, Dou K, Guan C, et al. Outcomes of Quantitative Flow Ratio-Based Percutaneous Coronary Intervention in an All-Comers Study [J]. EuroIntervention, 2022, 17(15): 1240-1251.
[18] Yabushita H, Goto S, Nakamura S, et al. Development of Novel Artificial Intelligence to Detect the Presence of Clinically Meaningful Coronary Atherosclerotic Stenosis in Major Branch from Coronary Angiography Video [J]. J Atheroscler Thromb, 2021, 28(8): 835-843.
[19] 血管内超声在冠状动脉疾病中应用的中国专家共识专家组. 血管内超声在冠状动脉疾病中应用的中国专家共识(2018) [J]. 中华心血管病杂志,2018, 46(5): 344-351.
[20] Raber L, Mintz GS, Koskinas KC, et al. Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions [J]. Eur Heart J, 2018, 39(35): 3281-3300.
[21] Gao XF, Wang ZM, Wang F, et al. Intravascular ultrasound guidance reduces cardiac death and coronary revascularization in patients undergoing drug-eluting stent implantation: results from a meta-analysis of 9 randomized trials and 4724 patients [J]. Int J Cardiovasc Imaging, 2019, 35(2): 239-247.
[22] Yu W, Tanigaki T, Ding D, et al. Accuracy of Intravascular Ultrasound-Based Fractional Flow Reserve in Identifying Hemodynamic Significance of Coronary Stenosis [J]. Circ Cardiovasc Interv, 2021, 14(2): e009840.
[23] Cho H, Kang SJ, Min HS, et al. Intravascular ultrasound-based deep learning for plaque characterization in coronary artery disease [J]. Atherosclerosis, 2021, 324: 69-75.
[24] Konig A, Klauss V. Virtual histology [J]. Heart, 2007, 93(8): 977-982.
[25] Nasu K, Tsuchikane E, Katoh O, et al. Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology [J]. J Am Coll Cardiol, 2006, 47(12): 2405-2412.
[26] Cheng JM, Garcia-Garcia HM, de Boer SP, et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: results of the ATHEROREMO-IVUS study [J]. Eur Heart J, 2014, 35(10): 639-647.
[27] Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation [J]. J Am Coll Cardiol, 2012, 59(12): 1058-1072.
[28] Shimokado A, Kubo , Matsuo Y, et al. Imaging assessment and accuracy in coronary artery autopsy: comparison of frequency-domain optical coherence tomography with intravascular ultrasound and histology [J]. Int J Cardiovasc Imaging, 2019, 35(10): 1785-1790.
[29] Ali ZA, Karimi Galougahi K, Maehara A, et al. Outcomes of optical coherence tomography compared with intravascular ultrasound and with angiography to guide coronary stent implantation: one-year results from the ILUMIEN Ⅲ:OPTIMIZE PCI trial [J]. EuroIntervention, 2021, 16(13): 1085-1091.
[30] Usui E, Mintz GS, Lee T, et al. Prognostic impact of healed coronary plaque in non-culprit lesions assessed by optical coherence tomography [J]. Atherosclerosis, 2020, 309: 1-7.
[31] Seike F, Uetani T, Nishimura K, et al. Intracoronary Optical Coherence Tomography-Derived Virtual Fractional Flow Reserve for the Assessment of Coronary Artery Disease [J]. Am J Cardiol, 2017, 120(10): 1772-1779.
[32] Abdolmanafi A, Duong L, Ibrahim R, et al. A deep learning-based model for characterization of atherosclerotic plaque in coronary arteries using optical coherence tomography images [J]. Med Phys, 2021, 48(7): 3511-3524.
[33] Karlsson S, Anesater E, Fransson K, et al. Intracoronary near-infrared spectroscopy and the risk of future cardiovascular events [J]. Open Heart, 2019, 6(1): e000917.
[34] Schuurman AS, Vroegindewey M, Kardys I, et al. Near-infrared spectroscopy-derived lipid core burden index predicts adverse cardiovascular outcome in patients with coronary artery disease during long-term follow-up [J]. Eur Heart J, 2018, 39(4): 295-302.
[35] Kuku KO, Singh M, Ozaki Y, et al. Near-Infrared Spectroscopy Intravascular Ultrasound Imaging: State of the Art [J]. Front Cardiovasc Med, 2020, 7: 107.
[36] Waksman R, Di Mario C, Torguson R, et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: a prospective, cohort study [J]. Lancet, 2019, 394(10209): 1629-1637.
[37] Muller J, Madder R. OCT-NIRS Imaging for Detection of Coronary Plaque Structure and Vulnerability [J]. Front Cardiovasc Med, 2020, 7: 90.
本文来源
蒋宇, 杨志刚, 郭应坤, 等. 冠状动脉粥样硬化病变的影像学研究进展[J]. 中国心血管杂志, 2023, 28(1): 75-78. DOI: 10.3969/j.issn.1007-5410.2023.01.016.
上一篇 : 900户商家集中签约入驻孝感首衡城
下一篇 : 最后一页